

Fang Zhiyuan 2021.6.18

Prior knowledge

Few shot segmentation

- Defects of Deep-learning-based Segmentation
 - Eager for large amount of samples of target
 - Cannot segment unseen objects
- The aims of Few-shot Segmentation
 - Segment unseen object with only a few references after training

Prior knowledge

Few shot segmentation

Divide classes C of dataset into seen C_{seen} and unseen C_{unseen} , $C_{seen} \cap C_{unseen} = \emptyset$

- $\square D_{train} = \{(S_i, Q_i)\}_{i=1}^{N_{train}}, \quad D_{test} = \{(S_i, Q_i)\}_{i=1}^{N_{test}}$
- $S_i = \{ (I_{c,k}, M_{c,k}) \mid c \in c_{seen} \text{ for training } else \ c \in c_{unseen} \}, \ Q_i = \{ (I_{c,n}, M_{c,n}) \}$
- (S_i, Q_i) called episode is the input to the model during training/testing stage

Prior knowledge

Hyper-correlation

A collection of 4D correlation tensors

Learning visual correspondence

- Find reliable correspondences under challenging degree of variations
- Build correspondences upon convolutional features pretrained on classification task
- Exploiting different levels of convolutional features ¹
- Employ 4D convolutions on dense feature ²

Robust Image Matching By Dynamic Feature Selection – BMVC 2020
Correspondence Networks with Adaptive Neighborhood Consensus – CVPR 2020

Motivation

Few shot semantic segmentation equals to:

- understand diverse levels of visual cues
- analyze fine-grained correspondence relations between the query and the support images

Proposed methods

- multi-level feature correlation
- efficient 4D convolutions

- Capture multi-level semantic and geometric patterns
- Query and support images $I^q, I^s \in \mathbb{R}^{3 \times H \times W}$
- L pairs of intermediate feature maps $\{(F_l^q, F_l^s)\}_{l=1}^L$

■ Mask each F_l^s with support mask $M^s \in \{0,1\}^{H \times W}$:

- $\widehat{F}_l^s = F_l^s \odot \zeta(M^s)$
- Hadamard product
- ζ bilinearly interpolates
- Form a 4D correlation tensor $\hat{C}_l \in \mathbb{R}^{H_l \times W_l \times H_l \times W_l}$:

$$\hat{C}_{l}(x^{q}, x^{s}) = ReLU\left(\frac{F_{l}^{q}(x^{q}) \cdot \hat{F}_{l}^{s}(x^{s})}{\|F_{l}^{q}(x^{q})\| \|\hat{F}_{l}^{s}(x^{s})\|}\right)$$

- Collect 4D tensors having the same spatial sizes $\{\hat{C}_l\}_{l\in\mathcal{L}_p}$ at some pyramidal layer p
- Form a hyper-correlation $C_p \in \mathbb{R}^{|\mathcal{L}_p| \times H_p \times W_p \times H_p \times W_p}$ by concatenating $\{\hat{C}_l\}_{l \in \mathcal{L}_p}$ along channel.

- Squeeze $C = \{C_P\}_{p=1}^P$ into $Z \in \mathbb{R}^{128 \times H_1 \times W_1}$
- Two blocks: f_p^{sqz} and f_p^{mix}
- Each block consists of
 - multi-channel 4D convolution
 - Group normalization
 - ReLU
- *f*_p^{sqz} squeeze last two (support) spatial dimensions
- f_p^{mix} has a FPN-like fuse structure
 - Up-sample first two spatial (query) dimensions
 - element-wise addition
- Average pooling the out of f_1^{mix} on last two (support) spatial dimensions

- 2D-convolutional context decoder
 - 2D convolutions
 - ReLU
 - Upsampling layers
 - Softmax

Center-pivot 4D convolution

- 4D convolution and its limitation:
 - quadratic complexity is too high
 - over-parameterization of the high-dimensional kernel

Center-pivot 4D convolution

- Goal: design a lightweight and efficient 4D kernel
- Main idea: disregard a large number of activations
- Given 4D position (x, x'), define two respective sets:

$$P_c(x, x') = \{(p, p') \in P(x, x') : p = x\}$$

$$P_{c'}(x, x') = \{(p, p') \in P(x, x') : p' = x'\}$$

Center-pivot 4D convolution

- Origin: $(c * k)(x, x') = \sum_{(p,p') \in P(x,x')} c(p,p')k(p-x,p'-x')$
- Improve: $(c * k_{CP})(x, x') = \sum_{p' \in P(x')} c(x, p') k_c^{2D}(p' x') + \sum_{p \in P(x)} c(p, x') k_{c'}^{2D}(p x)$

Experiments

Backbone	Mathada			1	-shot			5-shot # learnable						
network	Methods	5^{0}	5^{1}	5^{2}	5^{3}	mean	FB-IoU	5^{0}	5^{1}	5^{2}	5^{3}	mean	FB-IoU	params
VCC16 [61]	OSLSM [58]	33.6	55.3	40.9	33.5	40.8	61.3	35.9	58.1	42.7	39.1	43.9	61.5	276.7M
	co-FCN [51]	36.7	50.6	44.9	32.4	41.1	60.1	37.5	50.0	44.1	33.9	41.4	60.2	34.2M
	AMP-2 [60]	41.9	50.2	46.7	34.7	43.4	61.9	40.3	55.3	49.9	40.1	46.4	62.1	15.8M
V0010[01]	PANet [72]	42.3	58.0	51.1	41.2	48.1	66.5	51.8	64.6	<u>59.8</u>	46.5	55.7	70.7	14.7M
	PFENet [67]	<u>56.9</u>	68.2	<u>54.4</u>	<u>52.4</u>	<u>58.0</u>	72.0	<u>59.0</u>	69.1	54.8	<u>52.9</u>	<u>59.0</u>	<u>72.3</u>	<u>10.4M</u>
	HSNet (ours)	59.6	<u>65.7</u>	59.6	54.0	59.7	73.4	64.9	<u>69.0</u>	64.1	58.6	64.1	76.6	2.6M
ResNet50 [17]	PANet [72]	44.0	57.5	50.8	44.0	49.1	-	55.3	67.2	61.3	53.2	59.3	-	23.5M
	PGNet [82]	56.0	66.9	50.6	50.4	56.0	69.9	57.7	68.7	52.9	54.6	58.5	70.5	17.2M
	PPNet [35]	48.6	60.6	55.7	46.5	52.8	69.2	58.9	68.3	66.8	58.0	63.0	<u>75.8</u>	31.5M
	PFENet [67]	<u>61.7</u>	<u>69.5</u>	55.4	<u>56.3</u>	<u>60.8</u>	<u>73.3</u>	63.1	70.7	55.8	57.9	61.9	73.9	<u>10.8M</u>
	RePRI [4]	59.8	68.3	62.1	48.5	59.7	-	<u>64.6</u>	<u>71.4</u>	71.1	<u>59.3</u>	<u>66.6</u>	-	-
	HSNet (ours)	64.3	70.7	<u>60.3</u>	60.5	64.0	76.7	70.3	73.2	<u>67.4</u>	67.1	69.5	80.6	2.6M
	FWB [43]	51.3	64.5	56.7	52.2	56.2	-	54.8	67.4	62.2	55.3	59.9	-	43.0M
ResNet101 [17]	PPNet [35]	52.7	62.8	57.4	47.7	55.2	70.9	60.3	70.0	69.4	<u>60.7</u>	65.1	<u>77.5</u>	50.5M
	DAN [71]	54.7	68.6	57.8	51.6	58.2	71.9	57.9	69.0	60.1	54.9	60.5	72.3	-
	PFENet [67]	60.5	69.4	54.4	55.9	60.1	<u>72.9</u>	62.8	70.4	54.9	57.6	61.4	73.5	<u>10.8M</u>
	RePRI [4]	59.6	68.6	62.2	47.2	59.4	-	66.2	71.4	<u>67.0</u>	57.7	<u>65.6</u>	-	-
	HSNet (ours)	67.3	72.3	<u>62.0</u>	63.1	66.2	77.6	71.8	74.4	67.0	68.3	70.4	80.6	2.6M
	HSNet [†] (ours)	<u>66.2</u>	<u>69.5</u>	53.9	<u>56.2</u>	<u>61.5</u>	72.5	<u>68.9</u>	<u>71.9</u>	56.3	57.9	63.7	73.8	2.6M

Table 1: Performance on PASCAL- 5^{i} [58] in mIoU and FB-IoU. Some results are from [4, 35, 67, 71, 76]. Superscript † denotes our model *without* support feature masking (Eqn. 1). Numbers in **bold** indicate the best performance and underlined ones are the second best.

Experiments

Backbone	Mathada			1	-shot			5-shot					
network	Methods	20^{0}	20^{1}	20^{2}	20^{3}	mean	FB-IoU	200	20^{1}	20^{2}	20^{3}	mean	FB-IoU
	PPNet [35]	28.1	30.8	29.5	27.7	29.0	-	39.0	40.8	37.1	37.3	38.5	-
	PMM [76]	29.3	34.8	27.1	27.3	29.6	-	33.0	40.6	30.3	33.3	34.3	-
ResNet50 [17]	RPMM [76]	29.5	36.8	28.9	27.0	30.6	-	33.8	42.0	33.0	33.3	35.5	-
	PFENet [67]	36.5	38.6	34.5	33.8	35.8	-	36.5	43.3	37.8	38.4	39.0	-
	RePRI [4]	32.0	<u>38.7</u>	32.7	33.1	34.1	-	<u>39.3</u>	<u>45.4</u>	<u>39.7</u>	<u>41.8</u>	<u>41.6</u>	-
	HSNet (ours)	<u>36.3</u>	43.1	38.7	38.7	39.2	68.2	43.3	51.3	48.2	45.0	46.9	70.7
ResNet101 [17]	FWB [43]	17.0	18.0	21.0	28.9	21.2	-	19.1	21.5	23.9	30.1	23.7	-
	DAN [71]	-	-	-	-	24.4	62.3	-	-	-	-	29.6	63.9
	PFENet [67]	<u>36.8</u>	<u>41.8</u>	<u>38.7</u>	<u>36.7</u>	<u>38.5</u>	<u>63.0</u>	<u>40.4</u>	<u>46.8</u>	<u>43.2</u>	<u>40.5</u>	<u>42.7</u>	<u>65.8</u>
	HSNet (ours)	37.2	44.1	42.4	41.3	41.2	69.1	45.9	53.0	51.8	47.1	49.5	72.4

Backbone	Mathada	mIoU				
network	Methods	1-shot	5-shot			
	OSLSM [58]	70.3	73.0			
	GNet [52]	71.9	74.3			
VGG16 [61]	FSS [31]	73.5	80.1			
	DoG-LSTM [2]	<u>80.8</u>	<u>83.4</u>			
	HSNet (ours)	82.3	85.8			
ResNet50 [17]	HSNet (ours)	85.5	87.8			
ResNet101 [17]	DAN [71]	<u>85.2</u>	<u>88.1</u>			
Restrettor [17]	HSNet (ours)	86.5	88.5			

Table 2: Performance on COCO- 20^i [43] in mIoU and FB-IoU. The results of other methods are from [4, 35, 67, 71, 76].

Table 3: Mean IoU comparison on FSS-1000 [31]. Some results are from [2, 71].

Kernel type	50	5^1	1-shot 5^2	5 ³	mean	50	5^1	5-shot 5^2	5^3	mean	# learnable params	time (<i>ms</i>)	memory footprint (GB)	FLOPs (G)
Original 4D kernel [55]	64.5	71.4	<u>62.3</u>	61.7	64.9	70.8	74.8	67.4	67.5	70.1	11.3M	512.17	4.12	702.35
Separable 4D kernel [77]	<u>66.1</u>	<u>72.0</u>	63.2	<u>62.6</u>	<u>65.9</u>	<u>71.2</u>	74.1	<u>67.2</u>	<u>68.1</u>	<u>70.2</u>	<u>4.4M</u>	<u>28.48</u>	<u>1.50</u>	<u>28.40</u>
Center-pivot 4D kernel (ours)	67.3	72.3	62.0	63.1	66.2	71.8	<u>74.4</u>	67.0	68.3	70.4	2.6M	25.51	1.39	20.56

Table 4: Comparison between three different 4D conv kernels in model size, per-episode inference time, memory consumption and FLOPs. For fair comparison, the inference times of all the models are measured on a machine with an Intel i7-7820X and an NVIDIA Titan-XP.